Certification Authorities

presented to

ADPO

John Volmer
Electronics and Computing Technologies Division
November 13, 1996

Signature Examples

- Purchase Requisition
- Memoranda

Signature Characteristics

- The signature identifies the signer
 - → Typically it is eye-readable
 - Often across organizational boundaries
- The signature is unique
 - Only the owner of the signature can create that mark
- The signature cannot be duplicated
 - →No two people have the same signature

Signature Characteristics (Cont.)

- The document is unalterable
 - → A field cannot be changed
 - A field cannot be added
 - → A field cannot be removed
 - without the change being detectable

Signature Capability

- Because of these characteristics, a signature is legally binding
- In effect, it is non-repudiatable
 - → You can't say you didn't sign it

Electronic Signature Problem

- How do you provide the same characteristics as a physical signature, when every bit is potentially dynamic?
 - → How do you uniquely tie a person to a digital symbol?
 - Computers have no trouble copying data
 - Computers are discreet machines; it is easy for independent people to duplicate simple bit patterns
 - **→**Co

Conceptually

- In the past
 - People have relied on wax seals to authenticate
 - They used encryption to hide the contents
- Today we do the same thing
 - → We use encryption to affix a seal to a document
 - We use encryption to hide the contents of a document

Private Key (Symmetric) Encryption

Public/Private Key (Asymmetric) Encryption

Private Key Characteristics

- It is easier to understand
- It is computationally faster
- But, it does not scale . . .

You must exchange a key pair with all of your partners in advance

Public Key Characteristics

- Harder to understand
- Computationally more difficult
- But, it scales!

You only need to announce your public key once

How Does Public/Private Key Provide a Signature?

- The signature identifies the signer
 - → The public key is recorded in a database with the identity of the owner
 - Only the public key can decrypt private key encrypted material
 - → Hence, it can verify material encrypted by a user's private key

How Does Public/Private Key Provide a Signature? (Cont.)

- The signature is unique
 - → It is a big number
 - → 1024 binary digits, or
 - → 128 characters, or
 - → 256¹²⁸ possible combinations

100101011101...011110110110

How Does Public/Private Key Provide a Signature? (Cont.)

- The signature cannot be duplicated
 - → It is virtually impossible to duplicate randomly
 - The public and private keys are precisely related mathematically; no other key will decode a private key encryption

How Does Public/Private Key Provide a Signature? (Cont.)

- The document is unalterable
 - → A message digest is appended to the document

How Does Public/Private Key Provide a Signature? (Cont.)

→ The message digest can be subsequently validated

So, What Does a CA Have To Do With All This?

- First, it computes the public/private key pair
 - →Not a trivial task for such big numbers
 - →Ensures that key pairs are unique

So, What Does a CA Have To Do With All This? (Cont.)

- Second, it is a trusted party that tells others what the public key for a user is
 - Keeps track of who owns which public key
 - →Essential for identifying the signer
 - » If you receive a document from Carol Quinn how do determine what her public key is?
 - » Answer: you ask Carol's CA to provide a X.509 V3 certificate stating her identity and her public key

So, What Does a CA Have To Do With All This? (Cont.)

- Thirdly, it handles private keys that have been compromised
 - →Earlier I said that these keys are so big that the signature is unique
 - However, a user or CA failure could divulge a user's private key, thus allowing duplication
 - → The CA keeps a list of private keys that have been compromised
 - →It provides this list to other applications that need to validate signatures

... it is a trusted party ...

- What does it mean to trust a CA?
 - → How well do I have to manage my CA for it to be trustworthy?
 - → What must Carol Quinn do to prove her initial identity to the CA?
 - →If a CA turns out not to be trustworthy, is anyone liable?
 - → Extensive discussions are underway to define trust.

... you ask Carol's CA...

■ If the user whose signature you want to verify is from another organization, how do you determine where Carol's CA is?

→ Answer: You use the Public Key Infrastructure (PKI)

But that is another presentation . . .

Reasons for establishing a CA at ANL

- Enables digital signature applications
- Enables participation in the national PKI
- Enables participation in the federal PKI
- Enables ANL to perform public/private key authentication
- Enables ANL to issue X.509 V3 certificates

Certification Authorities

- For more information see http://www.anl.gov/ECT/certify
- Questions?

